From Palmström A.: RMi – a rock mass characterization system for rock engineering purposes. PhD thesis, Oslo University, Norway, 1995, 400 p.

APPENDIX 10

SYMBOLS USED

1. General

- γ weight per unit volume
- n porosity
- v Poisson's ratio
- μ friction coefficient (= tan ϕ)
- E Young's modulus
- V deformation modulus
- φ friction angle
- c cohesion

2. Rock properties

- w water content, dry weight basis
- d the diameter (in mm) of the actual specimen
- σ_c uniaxial compressive strength of intact rock material
- $\sigma_{c 90}$ uniaxial compressive strength measured at right angle to the schistocity or
- $\sigma_{c^{50}}$ uniaxial compressive strength for 50 mm diameter sample size

 R_c strength anisotropy ($\sigma_{c max} / \sigma_{c min}$)

- Ia₍₅₀₎ strength anisotropy index
- Is point load strength index
- Is₍₅₀₎ point load strength measured on standard 50 mm thick sample
- k correlation factor between compressive and point load strength ($k = \sigma_c/Is$)
- k_{50} correlation factor related to 50 mm thick samples ($k_{50} = \sigma_{c50}/Is_{50}$)
- Fi rock foliation index, as given in Table A3-I.
- fA rock anisotropy factor
- fW rock weathering and alteration factor
- c the content of platy and prismatic minerals in %

3. Jointing and block characteristics

- i dilation angle for a joint plane
- ϕ_j friction angle for a joint
- S_j shear strength intercept ('cohesion') for a joint
- JRC joint roughness coefficient
- JCS the joint wall compressive strength (for fresh (unweathered) rocks JCS = σ_c) u undulation of joint plane
- L₁ direct measured length along a joint surface (Turk and Dearman, 1982)
- L₂ the trace length measured on joint surface (Turk and Dearman, 1982)

	γ	angle between joint sets
	S	spacing of joints within a set
	Sa	average joint spacing
S1,	S2, S3	spacing in various joint sets
	α2	ratio between medium joint spacing and minimum spacing (S2/S1)
	α3	ratio between maximum joint spacing and minimum spacing (S3/S1)
	a3	length of the block
	a1	thickness of the block.
	β	block shape factor
	β _e	estimated block shape factor from $\beta_e = \beta_0 + 7(\alpha 3 - 1) = 27 + 7(\alpha 3/a1 - 1)$
	β	the lowest value of β , i.e. $\beta = 27$ for a cubical (equidimensional) blocks
	Jv	volumetric joint count (= the number of joints per m^3)
	wJd	weighted joint density
	Ib	block size index (eq. block diameter) introduced by ISRM (1978).
	Db	block diameter applied in rock support assessments (= $\sqrt[3]{Vb}$)
	Dbe	eq. block diameter
	Vb	block volume
	Vbo	block volume delimited by 3 joint sets intersecting at right angles
	A	the size of the observation area (in m^2 , see Fig. A3-27)
	na	number of joints on an observation area with length L _i
	na*	number of joints adjusted for the length and size of observation area (see
		eq. (A3-32a))
	Na	2-D joint frequency, i.e. the number of joints in a defined area, $Na = na/A$
	Nl	1-D joint frequency, i.e. the number of joints intersecting a defined length along a
		line or borehole
	Nr	the number of random joints in the observation area
	Nα	number of joints intersected at an angle α
	N_{90}	the number of joints with the same orientation which would have been observed at
		an intersection angle of 90°
	n _i	the rating for joint sets applied in eq. (A3-20 and (A3-21)
	ka	correlation factor from 2-D frequency measurement to 3-D (volume) (see
		Fig. A3-25c and eq. (A3-32b))
	kl	correlation factor from 1-D frequency measurement to 3-D (volume) (see
		Fig. A3-26 and eq. (A3-33))
	ca	1/ka for 2-D observations on rock surfaces
	cl	1/kl for 1-D observations of scanlines or drill cores
	L	length of the measured section along core or line, see Fig. A3-27
	δ	the angle between the observation plane (or drill core) and the individual joint.
		which is used in the weighted joint density method

 f_i factor for the angle between joint and observation plane (or $(1/\sin\delta_i)$ used in the weighted joint density measurement, as given in Table A3-31

4. Stresses and related parameters

- $\sigma_o \qquad \text{initial stress} \qquad$
- $\sigma_1, \sigma_2, \sigma_3$ principal stresses; $\sigma_1 > \sigma_2 > \sigma_3$
 - σ_{min} minimal principal stress
 - σ_{max} maximum principal stress
 - σ_1 ' the major principal effective stress at failure.

- σ_{3} ' the minor principal effective stress
- σ_n normal stress

 p_z or p_v vertical stress

- p_h horizontal stress
- p_0 in situ hydrostatic rock stress
- σ_{θ} tangential stress around underground openings
- σ_r radial stress around underground openings
- $\sigma_{\theta w}$ tangential wall stress
- $\sigma_{\theta r}$ tangential roof stress
- τ shear stress at failure
- Φ_i ' instantaneous friction angle
- c cohesion
- *c*_i' instantaneous cohesive strength
- k ratio of horizontal and vertical stresses (p_h/p_v)
- f the gradient of line in the $-\varepsilon_3^p$, ε_1^p diagram (Fig. 8-4)

5. Refraction seismic properties and features

- V_p longitudinal (compressional) wave velocity
- V_s shear wave velocity
- V_1 sonic velocity in water
- V_f longitudinal sonic velocitiy measured in the field
- V₁ longitudinal sonic velocity measured in the laboratory
- V_{\parallel}, V_{\perp} wave propagation parallel and across layers/schistocity

v seismic velocity measured in the field

- V₀ basic seismic velocity (km/s) for intact rock under the same stress level as in the field (measured in the laboratory)
- V_n maximum or 'natural' velocity in crack- and joint-free rock under the same stress level as in the field. Natural velocities for some fresh rocks measured in the laboratory are shown in Table A3-33
- a, b constants related to the local ground conditions (rock material, stress condition, jointing features etc.)for in-situ seismic velocities
- ks factor representing in-situ conditions in seismic velocity assessments
- Nl₁, v₁ and Nl₂, v₂ corresponding values of joints/m and in-situ longitudinal velocity, respectively, for two pairs of measurements
 - SVR 'seismic velocity ratio' (SVR = V_f/V_l)
 - VI sonic velocity index ($VI = SVR^2$)

6. Rock mass properties and features

 σ_{cm} the compressive strength the rock mass,

- *m* undisturbed material constant in the original Hoek-Brown failure criterion
- m disturbed material constant in the original Hoek-Brown failure criterion
- m_r material constants in the Hoek-Brown failure criterion for *broken* rock mass
- *m_i* material constants in the Hoek-Brown failure criterion for intact rock
- m_b constant in the modified Hoek-Brown failure criterion (1992)
- *s* undisturbed material constant in the original Hoek-Brown failure criterion
- s disturbed material constant in the original Hoek-Brown failure criterion

- *s_r* material constants in the Hoek-Brown failure criterion for *broken* rock mass
- *a* constant in the modified Hoek-Brown failure criterio (1992)
- C_g the reduction factor which Hansagi named 'gefüge-factor' (joint factor) being "representative for the jointed effect of a rock mass".
- 6.1 Classification systems and parameters
- RSR rock structure rating
- RMR rock mass rating in the Geomechanics classification system
- RQD rock quality designation
- Q rock mass quality value in the Q classification system
- Jn factor for joint set number in the Q-system
- Jr factor for joint roughness in the Q-system
- Ja factor for joint alteration and filling in the Q-system
- Jw factor for joint water pressure or inflow in the Q-system
- SRF stress reduction factor in the Q-system
- ESR excavation support ratio in the Q-system

6.2 Parameters and features in the Rock Mass index (RMi)

- jR joint roughness factor, representing the small and large scale unevenness of the joint surface ($jR = jw \times js$)
- js joint smoothness factor (small scale evenness of joint surface)
- jw joint waviness factor (large scale planarity of joint wall)
- jA joint alteration factor, characterizing the strength of the joint surface
- jL joint length and continuity (joint termination) factor
- jC joint condition factor (combination of jR, jA and jL)
- JP jointing parameter (i.e. combination of jC and Vb)
- D factor in eq. (4-4) to calculate the jointing parameter $[JP (D = 0.37 \times jC^{-0.2})]$

7. Parameters in the RMi rock support method

- z the depth of the actual location below surface
- Db equivalent block diameter
- CF continuity factor for the rock mass (CF = tunnel size/block size)
- Cg competency factor for continuous ground (Cg = RMi $/\sigma_c$)
- Gc ground condition factor for discontinuous ground (Gc = $JP \times SL$)
- SL stress level factor used for discontinuous ground
- Sr size ratio $(Sr = CF \times Co)$
- Co orientation factor for joints and zones
- C gravity adjustment factor (of Gc) for tunnel walls (Milne and Potvin, 1992)
- α the strike between tunnel surface and discontinuity
- β the dip between tunnel roof (or floor) and discontinuity
- Tz the width (thickness) of weakness zone
- Ts the width (thickness) of singularity
- σ_{cz} compressive strength of rock material in weakness zone
- JP_a the jointing parameter of the rock masses adjacent to the weakness zone
- Gc_z the ground condition factor for zones with $Tz < JP_a \times \sigma_{cz}$

A10 - 5

size ratio (Sr_z = Co \times Tz /Db) for weakness zones for Tz < Wt or Tz < Wt Srz

- Gcs the ground condition for singularities
- В rock bolt
- S shotcrete
- F fibrecrete
- width (span) of tunnel Wt

height of tunnel (or wall height) Ht (or Hw)

- internal tunnel radius ri
- А roof factor for various excavation shapes (used by Hoek and Brown, 1980)
- wall factor for various excavation shapes (used by Hoek and Brown, 1980) В

8. Parameters and features applied in the method for TBM penetration assessment

- E factor for various groups of rocks
- a TBM jointing factor (applied in the NTH method) k,
- factor representing orientation of the main joint set relative to the tunnel axis co
- 'equivalent TBM jointing factor' (applied in the NTH method) keq
- adjustment factor of k_s to arrive at $k_{eq} = k_s \cdot k_{DRI}$ (applied in the NTH method) k_{dri}
- equivalent thrust per cutter (also applied in the NTH method) Meq
- M_B thrust capacity per disc (also applied in the NTH method)
- correction factor for cutter diameter in Fig. 7-7 (also applied in the NTH method) k_d
- correction factor for cutter spacing given in Fig. 7-8 (also applied in the NTH ka method)
- TBM advance rate (m/h) Ι
- TBM penetration rate in mm per revolution $i_o = F \times k_{eq}^{G}$ i_o
- F
- a factor in the expression for TBM penetration (F = $0.0015 \text{ M}_{eq}^{-1.5}$) an exponent in the expression for i_o (G = $30 \text{ k}_{eq}^{-0.5} \times \text{ M}_{eq}^{-0.8}$ for $\text{k}_{eq} < 3.5$) G