

Reference: Palmstrom, A., 2009: Combining the RMR, Q, and RMi classification systems. www.rockmass.net, 25p.

COMBINING THE RMR, Q, AND RMI CLASSIFICATION SYSTEMS

by Arild Palmström, Ph.D RockMass as, Oslo Norway

Summary

The main rockmass classification systems make use of similar rockmass parameters. It is therefore shown how the input parameters of the RMR, Q and RMi systems can be combined into one set of tables. These enable the ground quality to be found directly and independently in the three systems from only one set of observations. Thus, the estimated rock support found in one system can be easily checked in other systems. This method results in better rock support estimates; provided the actual ground is within the limitations of the systems and that the ground characterization is properly made. The combined input and calculations can easily be made in a computer spreadsheet.

The paper also shows that there are crude correlations between the three systems, i.e. that the estimated quality of the same ground is calculated differently in the three systems. This supports the postulate of Bieniawski that at least two classification systems should be applied in rock engineering assessments.

Table of contents

1 INTRODUCTION	2
2 SHORT ON THE RMR, Q AND RMI CLASSIFICATION SYSTEMS FOR ROCK SUPPORT	2
2.1 The RMR classification system	
2.2 The Q rock mass classification system	
2.3 The RMi rockmass classification system and RMi used for rock support	3
2.3.1 The RMi rockmass classification	
2.4 Differences in the RMR, Q and RMi systems	5
3 COMBINING THE INPUT PARAMETERS TO RMR, Q AND RMI SYSTEMS	5
3.1 The input parameters used in the three systems	5
3.2 Parameters for the degree of jointing	
3.3 The joint characteristics used	7
3.4 Ground water features	8
3.5 Rock stress parameters	9
3.6 Weakness zone parameters	
3.7 The combined input tables	9
4 TWO WORKED EXAMPLES	
4.1 Example 1: Moderately jointed rock	13
4.2 Example 2: Strongly jointed rocks	
5 COMPARISON BETWEEN THE THREE CLASSIFICATION SYSTEMS	14
6 CONCLUSIONS	15
7 REFERENCES	
7.1 Publications referred to:	
7.2 Some other publications, which are related to this article	17
8 APPENDICES	
Appendix 1. The input parameters used in the RMR_{1989} classification system	

Appendix 2. The input parameters used in the Q classification system

Appendix 3. The input parameters used in the RMi system

Appendix 4. The support table used in the RMR classification system

- Appendix 5. The support chart used in the Q_{1993} system
- Appendix 6. The support charts used in the RMi support method
- Appendix 7. Graphical method to easily estimate the RMi value

1 INTRODUCTION

As pointed out Barton and Bieniawski in T&T February, 2008, rock engineering classification systems play a steadily more important role in rock engineering and design. The main classification systems for rock support estimates, the Q and the RMR, use the most important ground features or parameters as input. Each of these parameters is classified and each class given values or ratings to express the quality of the ground with respect to tunnel stability. Also, the NATM (New Austrian Tunnelling Method) and the RMi (Rock Mass index) support method use similar parameters.

For arriving at appropriate results in rock engineering and design, Bieniawski (1984, 1989) advises application of at least two classification systems when applying such empirical tools. However, many users are practising this recommendation by finding the value (quality) in one classification system from a value in another, using some sort of transition equation(s). The most known of these transitions, between Q and RMR is presented in Figure 1. As seen, this equation is a very crude approximation, involving an inaccuracy of \pm 50% or more. Thus, severe errors may be imposed, resulting in reduced quality of the rock engineering works, or even errors that may lead to wrong decisions. Another error may be imposed from the fact that the two systems have different limitations.

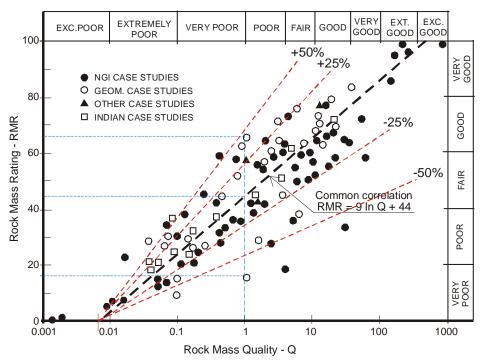
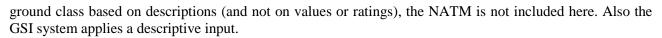


Figure 1: Correlation between the RMR and the Q-index with deviation from the common correlation. As seen, for Q = 1, RMR varies from less than 20 to 66. Note that the Q system applies logarithmic scale (After Bieniawski, 1976, and Jethwa et al., 1982).


This article outlines a method to combine the input parameters used in three of the systems into one set. By this, the ground quality values in the three systems can be found independently. Computer spreadsheet is very useful in the process of calculating the values. However, the rating values of each of the input parameters must be closely evaluated from the site geological conditions.

2 SHORT ON THE RMR, Q AND RMI CLASSIFICATION SYSTEMS FOR ROCK SUPPORT

The most common classifications systems used worldwide today are the RMR system published by Bieniawski in 1973 and the Q system, first described in 1974 by Barton et al. More recently, Palmström presented the RMi system in 1995. All these systems have quantitative estimation of the rock mass quality linked with empirical design rules to estimate adequate rock support measures.

The new Austrian tunnelling method (NATM) has been frequently used since it was presented in 1965. This method involves the whole sequence of rock tunnelling items from preinvestigations, through engineering and contracting, to construction and monitoring. As the ground is described behaviourally and allocating a

2.1 The RMR classification system

Bieniawski (1973 and 1974) published the details of a rock mass classification called the Geomechanics Classification or the Rock Mass Rating (RMR) system. Some changes have been made over the years with revisions in 1974, 1975, 1976, and 1989; the 1976 and the 1989 versions of the classification system are mostly used.

RMR = A1 + A2 + A3 + A4 + A5 + B

eq. (1)

where

A1 = ratings for the uniaxial compressive strength of the rock material; A2 = ratings for the RQD; A3 = ratings for the spacing of joints; A4 = ratings for the condition of joints; A5 = ratings for the ground water conditions; and B = ratings for the orientation of joints. See Appendix 1.

From the value of RMR in the actual excavation, the rock support can be estimated from a special excavation and support table (for tunnels of 10m span), see Appendix 4. RMR can also be used to crudely estimate the deformation modulus of rock masses. Bieniawski (1989) strongly emphasises that a great deal of judgement is used in the application of a rock mass classification system in support design.

<u>Limits</u>

It is no input parameter for rocks stresses in the RMR system, but stresses up to 25MPa are included in the estimated RMR value. Thus, overstressing (rock bursting and squeezing) is not included. Whether or how faults and weakness zones are included, is unclear. No special parameter for such features is applied, but some of the parameters included in the system may represent conditions in faults, though the often complicated structure and composition in these features are generally difficult to characterize and classify. Therefore, it is probable that RMR does not work well for many faults and weakness zones. Swelling rock is not included in the RMR system.

2.2 The Q rock mass classification system

Based on a large database of tunnel projects, Barton et al. (1974) of the Norwegian Geotechnical Institute (NGI) worked out the Q system for estimating rock support in tunnels. The value of Q is defined by six parameters combined in the following equation:

$$Q = RQD/Jn \times Jr/Ja \times Jw/SRF$$
 eq. (2)

where

RQD = given as the value for this parameter; Jn = ratings for the number of joint sets; Jr = ratings for the joint roughness; Ja = ratings for the joint alteration, Jw = ratings for the joint or ground water, and SRF = ratings for the rockmass stress situation. See Appendix 1.

The Q-system is developed as an empirical design method for estimating rock support. Together with the ratio between the span or wall height of the opening and the stability requirements to the use of the tunnel or cavern (excavation support ratio called ESR the Q value defines the rock support in a support chart, see Appendix 2.

Limits

As pointed out by Palmstrom and Broch (2006) the Q system has several limitations, working best between Q = 0.1 and Q = 40 for tunnels with spans between 2.5m and 30m. Though there are input parameters for overstressing, Q should be used with care in rock bursting and especially in squeezing ground. The same is the case for weakness zones; especially where swelling ground occurs.

2.3 The RMi rockmass classification system and RMi used for rock support

2.3.1 The RMi rockmass classification

The rock mass index, RMi, was first presented by Palmström in 1995 and has been further developed and presented in several papers. It is a volumetric parameter indicating the approximate uniaxial compressive strength of a rock mass, and it can thus be compared with the GSI value. The RMi value is applied as input for estimating rock support and input also to other rock engineering methods.

The RMi system has some input parameters similar to those of the Q-system. Thus, the joint and jointing features are almost the same. The input parameters used can be determined by commonly used field observations and measurements. It requires more calculations than the RMR and the Q system, but spreadsheets have been developed (see www.rockmass.net) from which the RMi value and the type(s) and amount of rock support can be found directly.

In *jointed rock* the RMi makes use of the uniaxial compressive strength of intact rock (σ_c) and the reducing effect of the joints (JP) penetrating the rock mass, given as

$$RMi = \sigma_c \times JP$$

where

 σ_c = uniaxial compressive strength of the intact rock, JP = the jointing parameter combines by empirical relations jC (joint conditions) and Vb (block volume) in the following exponential equation derived from strength tests on large jointed rock samples:

eq. (3)

$$JP = 0.2\sqrt{jC} \times Vb^{D} \qquad (D = 0.37 jC^{-0.2}) \qquad eq. (4)$$

where

 $jC = jR \times jL/jA$ (jR = the joint roughness, jA = the joint alteration, and jL = the joint length), see Appendix 3. JP can easily be found from the chart presented in Appendix 7.

In *massive rock*, the few joints present have limited influence on the strength, therefore

 $RMi = \sigma_c \times f_\sigma$ (applied for cases where $f_\sigma > JP$) eq. (5)

where

 f_{σ} is called the massivity parameter, given as $f_{\sigma} = \sigma_c (0.05/Db)^{0.2}$ eq. (6) (Db = block diameter). In most cases $f_{\sigma} \approx 0.5$

As the RMi value characterizes properties (strength) the dry rockmass material, it does not include the influence from rock stresses (and ground water).¹

2.3.2 The RMi used for rock support estimates

The RMi method for rock support applies different equations whether the rock mass is jointed (discontinuous) or overstressed. In addition, an equation for weakness zones is included as shown below:

In jointed rock or blocky ground the RMi value is adjusted for the influence of stresses (SL), ground water (GW) to characterize the ground quality given as the

Ground condition factor, $Gc = RMi \times SL \times GW$ eq. (7)Gc is combined in the support chart together with the
Geometrical or size ratio, $Sr = Dt/Db \times Co/Nj$ eq. (8)

where

Dt = tunnel diameter (span or wall height); Db = block diameter; Co = orientation of (main) joint set; Nj = rating for the number of joint sets. See Appendix 6.

For *weakness zones*, the thickness (Tz) of the zone is used in the geometrical ratio (Sr) instead of tunnel diameter (Dt) where Tz < Dt.

The support chart used for jointed rocks and weakness zones is shown in Appendix 2.

Where <u>overstressing</u> takes place in massive or particulate (highly jointed) ground, the required support is found in a special support chart using the competency of the ground, expressed as

 $Cg = RMi/\sigma_{\theta}$ (= rockmass strength/tangential stress) eq. (9)

The RMi value can be found graphically, as shown in Appendix 7

¹ The effect of interlocking (IL) of the rockmass structure similar to what is used in the GSI system, can be included in the RMi by $RMi = RMi_{old} \times IL$, which is used in the following equations where RMi is involved. As seen in Table 4.E, the value of IL = 1 for normal tight (jointed) rockmass structures.

Limits of the RMi and the support estimate

The RMi system applies best to massive, jointed and crushed rock masses where the joints in the various sets have similar properties. It may also be used in overstressed, brittle ground, and as a first check for support in faults and weakness zones, but its limitations here are pointed out by Palmström (1995). As for the other classification systems, great care should be used in the characterization and estimate of support in complex weakness zones. Though separate calculations are given for overstressed ground, RMi should be applied with care in squeezing ground. Swelling is not dealt with in the RMi system.

2.4 Differences in the RMR, Q and RMi systems

Though the three systems have several common parameters, there are some differences. The main ones are:

- 1. The way the input values are combined in the systems to calculate the ground quality:
 - RMR uses addition of the ratings, while
 - Q applies multiplication and division;
 - RMi uses a combination of multiplication and exponential calculation.
- 2. The support is found in different ways from the ground quality calculated:
 - In RMR from a table (for tunnels with 10m span);
 - In Q from a chart where the Q value (ground quality) and the tunnel dimensions (span or wall height is used;
 - The RMi divides estimates of support between:
 - a) Jointed rocks, where a chart for the ground conditions (quality) and the geometrical ratio (tunnel size and block size) is combined.
 - b) Overstressed ground (in massive rocks and particulate rocks), where the system makes use of estimated tangential stress, which is compared with the RMi value.
- 3. The Q-system does not apply input for the rock properties directly, but this parameter is indirectly used in some other parameters. In 2002 the Qc was introduced (Barton, 2002), where the compressive strength of rock is included directly. So far, this parameter seems to be seldom applied in support estimates.
- 4. In the RMR system, stresses up to 25MPa are included. This means that RMR does not include stress problems in tunnelling (i.e. rock bursting, squeezing)
- 5. Weakness zones are characterized differently in the three systems. In the RMR, no special parameter is used; the Q applies a classification based on composition and depth of the zone; in the RMi the size of the zone is used.

3 COMBINING THE INPUT PARAMETERS TO RMR, Q AND RMI SYSTEMS

3.1 The input parameters used in the three systems

Table 1 shows the main ground parameters used as input to the RMR, Q, and RMi systems. Some special rockmass or ground conditions, like swelling, squeezing, and ravelling ground are not covered well in any of the three classification systems. For such conditions, the rock support should be evaluated separately using other rock engineering tools. For all three systems, the rock support is generally related to excavation by drilling and blasting.

During the field characterization and description, it is important to be aware of the relevant size of the observation area. Generally, it should be related to the size of the area to be supported, in most cases the span of the actual tunnel, and some 3 - 5m length along the tunnel; that is $15 - 25m^2$ for a 5m wide tunnel. This condition is important when the input for the number of joint sets is selected.

	INPUT PARAMETERS			Sy	mbol us	ed in:
Parameter	Class	sification		RMR	Q	RMi
A. ROCK(S)	Uniaxial compressive strength of intact rock		MPa	A1	1)	σc
	RQD (Rock Quality Desig	nation)	%	A2	RQD	-
B. DEGREE OF JOINTING	Block volume		m³	-	-	Vb
	Average joint spacing		m	A3	-	-
C. JOINTING PATTERN	Number of joint sets (at th	e actual location)	rating	-	Jn	Nj
C. JOINTING FATTERIN	Orientation of main joint s	set	rating	В	-	Co
	Joint smoothness	Joint roughness	rating	A4c	Jr ²⁾	jR ²⁾ js
	Joint waviness	(in Q and RMi systems)	rating	-	J	jr jv
D. JOINT	Joint alteration (weathering and filling)		rating	A4e	Ja	jА
CHARACTERISTICS	Joint size (length)		rating	A4a	-	jL
	Joint persistence (continuity)		rating	-	-	cj
	Joint separation (aperture)		rating	A4b	-	-
E. INTERLOCKING	Compactness of rockmas	s structure	rating	-	-	IL
F. GROUND WATER	Water inflow or water pre	ssure	rating	A5	Jw	GW
G. ROCK STRESSES	Stress level		rating	-		SL
(around tunnel)	Overstressing (rock burst of	r squeezing ground)	rating	-	SRF	CF ³⁾
	Type of weakness zone		rating	-		-
H. WEAKNESS ZONE	Size (thickness) of the zo	ne	m	-	-	Tz
Orientation of the zone			rating	-	-	Coz

Table 1	Overview of the	innut	narameters	used in	the	three systems	2
		input	parameters	useu III	uie		۰

3.2 Parameters for the degree of jointing

RQD, block volume, the volumetric joint count, and joint spacing are most frequently used to describe the degree of jointing. The three classification systems apply these measurements differently.

It has been a goal, when combining the three systems, to also combine the jointing measurements. Therefore, correlations between them are presented, as shown in the following.

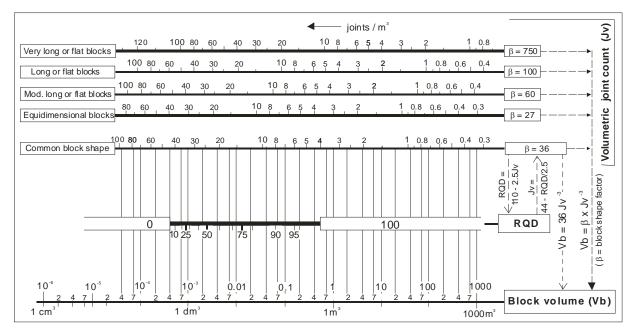


Figure 2: Correlation chart for various measurements of the degree of jointing: RQD, Jv and Vb (from Palmstrom, 2005). The block shape influences on the relations, for example, Jv = 6 for common block shape corresponds to Vb = 0.15 m³; while for Jv = 6 and very long blocks, Vb = 3 m³

As presented by Palmstrom (2005) it is no good correlation between RQD and Jv (volumetric joint count) or block volume (Vb). As an average, crude correlation, Palmstrom has suggested the following equation between RQD and Jv:

RQD = 110 - 2.5Jv	Eq. (10)

The "old" equation RQD = 115 - 3.3Jv may, however, still be used.

Eq. (11)

As seen in Figure 2, the RQD covers only a limited part of the jointing range, but often the main part of it responsible for block falls in tunnels. In addition, the RQD has limited possibilities to accurately characterize the degree of jointing as has been discussed in the GeoEng2000 workshop and by Palmstrom (2005), see <u>www.rockmass.net</u>. For further information on joint measurements, see Hadjigeorgiou et al. (1998).

Spacing (S) is used as input to RMR, where the spacing of the set with smallest spacing is applied. From Vb the spacing may be found as $S \approx Vb^{1/3}$. From RQD no correlation to spacing has been found in the literature. When spacing is calculated from the other types of jointing measurements, only average spacing values are found, which may not be the smallest one.

3.3 Parameters for the joint characteristics

The main joint characteristics include:

- Joint roughness (smoothness, waviness or undulation),
- Filling or coating, and weathering of joints,
- Width or aperture of joint, as well as
- Joint size.

The Q and the RMi systems apply similar measurements and characterisation for roughness and filling (alteration), while RMR has another layout, as shown in Table 2.

Q		RI	Mi	RMR	
	Joint roughness (Jr) consisting of small scale	smoothness	Joint roughness (jR)	joint smoothness (js)	Roughness (A4c) given as small scale smoothness
	and large scale wavines		jR = Jr = js × jw	joint waviness (jw)	-
	Joint alteration (Ja)	unfilled	Joint alteration (jA)	unfilled	Weathering (A4e)
	Juint alteration (Ja)	ation (Ja) filled Joint alter		filled	Infilling (A4d)

Table 2: The parameters for joint roughness, alteration, weathering and infill applied the three classification systems

The Q system applies Jr = 1 for filled, as roughness in such cases will have little effect on the shear strength. In RMR, however, it is possible to use rating for rough joint planes in filled joints, though it will seldom occur in practice. When combining the systems, the principle applied here in the Q system has been chosen.

Only RMR applies input for joint aperture or separation. Interlocking of the rockmass as is used in the GSI system, is considered to partly cover joint aperture and separation. As described earlier, this parameter has been included in the RMi system.

RMR and RMi systems apply input for joint size (length, persistence), but not the Q system. RMi uses the parameter 'discontinuous joints' joints ending in massive rock in combination with joint size. In the combined rockmass classification system this feature is included in the parameter for joint waviness (See Table 4.D2)

In connection with the Tables 4, the following expressions may need explanation:

- *Seam* is a minor, often clay-filled zone with a thickness of a few centimetres. When occurring as weak clay zone in a sedimentary sequence, a seam can be considerably thicker. Otherwise, seams may represent very minor faults or altered zones along joints, dikes, beds or foliation (Brekke and Howard, 1972).
- *Shear* is a seam of sheared and crushed rock of several millimetres to as much as a metre thickness of soft or friable rock or soil.²

² ISRM (1975) advises against the use of the terms *tension joint* and *shear joint*, since there are many possible ways that they can be developed. For example, tension joints can be developed from cooling of igneous rock, from shrinkage of sediments, from folding, or from ice retreat.

- *Singularity* is used as a general term for seams, filled joints, shears or other persistent discontinuities, which are not considered to belong to the normal, overall or detailed jointing.

3.4 Ground water features

Ground water influences the condition in an underground excavation in three ways:

- 1. As joint or cleft pressure by adding stresses to the ground surrounding the excavation, and thereby reducing the stability. This is mainly the case for large water inflows. (For small inflows the draining effect of the tunnel will often prevent large water pressures from being built up near the tunnel surface.)
- 2. By softening clay, talc or other joint fillings or by washing out such fillings after these have been encountered during excavation. This is especially the case with pressurized inflow (water gushes or flows rapidly) into the tunnel. When the excavation is located below groundwater table, the filling material is already wet, but reduced stresses across the joint may cause increased saturation of the filling material and thus some reduced friction and shear strength.
- 3. As inflow of water by affecting the working conditions for the tunnel crew.

RMR		Q	RMi		
Description used	Water inflow per 10m tunnel (litres/min)	Joint water pressure / major principal stress p _w / σ1	Description used	Water pressure (kg/cm ²)	Description (influence on stability)
Completely dry	none	0	Dry excavations or minor inflow, i.e. < 5 litres/min locally	< 1	Dry or wet:
Damp	< 10	0 - 0.1	Medium inflow or pressure, occasional outwash of joint fillings	1 - 2.5	No or minor stability influence
Wet	10 - 25	0.1 - 0.2	Large inflow or high pressure in competent rock with unfilled joints	2.5 - 10	Seeping/dripping: Unfavourable joints with seeping may seldom influence
Dripping	25 - 125	0.2 - 0.5	Large inflow or high pressure, considerable outwash of joint fillings	2.5 - 10	<u>Gushing:</u> May clearly influence on stability
Flowing	> 125	> 0.5	Exceptionally high inflow or water pressure at blasting, decaying with time	> 10	
			Exceptionally high inflow or water pressure continuing without noticeable decay	> 10	
			Note: (i) The last four factors are crude e	stimates	

Table 3: The divisions of ground water occurrences applied in the three classification systems

All three systems apply input for water, but the characterization and application are somewhat different, see Table 3. The RMR system, and especially the Q system, applies input of flowing water situations. In such cases the support recommendation may not be relevant, as the use of shotcrete (sprayed concrete) is difficult or not suitable. Such working conditions often require other works, such as sealing of the water by grouting, to be implemented before estimated the support by can be installed.³ Such sealing works are not prescribed in the two systems.

The RMi support system preferably uses the influence water may have on stability (where that in practice is possible to estimate) as ground water input, but limited to gushing inflows.

A classification of the inflow of water into underground excavations, measured along 10m of the tunnel is suggested as:

seepage	for inflow volumes < dm³/day;
dripping	for inflow volumes of dm ³ /day to m ³ /hour;
flowing / gushing	for inflow volumes of m ³ /hour to several m ³ /min;
water in-burst	for inflow volumes of several m ³ /s.

³ Grouting will reduce the inflow and hence result in reduction of the input parameter for ground water

3.5 Rock stress parameters

It is important to divide between stresses below and stresses exceeding the strength of the rock masses surrounding the excavation. It is generally difficult to measure or calculate the magnitude of the tangential stresses acting around the surface of an excavation.

In massive ground, overstressing is of particular importance as the ground behaviour will change from stable at moderate stress levels to bursting (in brittle rocks) or squeezing (in deformable rocks). Squeezing may also occur in highly jointed (particulate) rock with clay or other materials with deformable properties.

Stresses are applied differently in the three classification systems. RMR has as earlier mentioned, no input of stresses, but stresses below 25MPa are included in the support estimates. For Q, the input is characterized in the SRF factor (which also represents weakness zones). SRF for stresses is divided into three groups: 1) stresses below rock mass strength, 2) overstressing in massive, brittle rock, and 3) overstressing where squeezing may take place. In the RMi rock support as special chart is applied for overstressing.

The two different ways for input of stresses in Q and RMi have been combined, using the division in the Q system. Here, it might be mentioned that the estimated rock support can be found directly (without input of all input parameters) from the RMi support diagram for overstressed ground if the $\sigma_{\theta} / \sigma_{cm}$ or σ_{θ} / RMi is known.

3.6 Weakness zone parameters

According to definition, *weakness zone* is a part, layer or zone in the ground in which the mechanical properties are significantly lower than those of the surrounding rock masses. Weakness zones can be faults, shears / shear zones, thrust zones, weak mineral layers, etc. In the opinion of the author, a weakness zone may range from about a metre to some tens of metres.

Weakness zones are applied differently in the three systems. The Q system applies a part of the SRF (stress reduction factor) values for some specified types of zones, In the RMi and RMR systems the composition of the zone is given through input of the composition characteristics of the zone. RMi applies in addition, the thickness (size) of the zone as the zone input, while RMR has no special parameter for weakness zones.

The type and the size of zone intersecting the excavation are used as inputs for weakness zones.

In the opinion of the author, it is difficult to include the many variable conditions and features involved in faults and weakness zones in a general classification system. Therefore, there are several limitations in the application of weakness zones in all the three classification systems.

3.7 The combined input tables to the classification systems

Table 4 shows the combined, common input parameters with the values or ratings used in each of the three systems. The experienced reader will find that many of the parameters presented are more or less similar to what is used in the RMR and the Q systems, though some new combinations are introduced. It is important to keep in mind that the parameters give averaged values, and that it might be significant variation between the lowest and highest value and rating for most of them. Note that swelling is not included in Table 4 (except in the joint alteration number, Ja, in the Q system)

Table 4: The combined input parameters of ground conditions

A. ROO	A. ROCKS		RMR	Q	RMi	
A1. Cor	1. Compressive strength (σ_c) of intact rock		A1 =	-	σ_c =	
S	oil	σ _c < 1 MPa	0			
	a. Very low strength	1 – 5MPa	1			
	b. Low strength	5 – 25MPa	2	N lo t lo oluvilo d		
Rock	c. Moderate strength	25 – 50MPa	4	Not included, except in	Use actual value of σ_c	
Rook	d. Medium strength	50 – 100MPa	7	Qc = Q x σ_c /100	, i i i i i i i i i i i i i i i i i i i	
	e. High strength	100 – 250MPa	12			
	f. Very high strength	> 250MPa	15			

B. DEGREE OF JOINTING	RMR	Q	RMi		
B1. Rock quality designation (R	QD)	A2 =	RQD =	-	
a. Very good	RQD = 90 - 100	20			
b. Good	75 - 90	17	Use actual RQD		
c. Fair	50 - 75	13	value	Not included	
d. Poor	25 - 50	8	(min RQD = 10)		
e. Very poor	< 25	5			
An approximate correlation between RC	D and Jv is: RQD = 110 – 2.5Jv (Jv	= jointing parameter)			
B2. Block size		-	-	Vb =	
Block volume (Vb)		Not included	Not included	Use actual value of Vb in m ³	
The block volume can be calculated from Ear subical block shapes $\theta = 27.22$ for the second statement of the second statement	m the Jv: Vb = $\beta \times Jv^{-3}$ slightly long or flat shapes $\beta = 32 - 40$,	, for long or flat shapes eta	= 40 - 75	I	
T of cubical block shapes $p=27-32$, for a					
B3. Joint spacing		A3 = ¹⁾	-	-	
	Spacing >2m	A3 = ¹⁾ 20	-	-	
B3. Joint spacing	Spacing >2m 0.6 - 2m		-	-	
B3. Joint spacing a. Very large spacing		20	- Not included	- Not included	
B3. Joint spacing a. Very large spacing b. Large spacing	0.6 - 2m	20 15	- Not included	- Not included	

C. JOINTING PATTERN	RMR	Q	RMi
C1. Joint set number	-	Jn =	Nj =
No or few joints		0.75	6
a. 1 joint set		2	3
b. 1 joint set + random joints		3	2
c. 2 joint sets		4	1.5
d. 2 joint sets + random joints	Not included	6	1.2
e. 3 joint sets		9	1
f. 3 joint sets + random joints		12	0.85
g. 4 joint sets or more; heavily jointed		15	0.6
h. Crushed, earth-like		20	0.5
C2. Orientation of main joint set	B =	-	Co =
a. Very favourable	0		1
b. Favourable	-2		1
c. Fair	-5	Not included	1.5
d. Unfavourable	-10		2
e. Very unfavourable	-12		3

		DM	D		ว ¹⁾		ли:	
D. JOINT CHARACTERISTICS D1. Joint smoothness (small scale roughness)		RMR					RMi ·-	
(called 'roughness' in the RMR)	,	A4c =		(js =)		js =		
a. Very rough		6			2		2	
b. Rough or irregular		5			1.5		1.5	
	c. Slightly rough			1	.25		1.25	
d. Smooth		1			1		1	
e. Polished		0		C	.75	(0.75	
f. Slickensided		0		(0.5		0.5	
D2. Joint undulation or waviness (large scale	roughness)	-		(jı	N =)	j	w =	
a. Discontinuous joints					4		4	
b. Strongly undulating					2.5		2.5	
c. Moderately undulating		Not inc	luded		2		2	
d. Slightly undulating					1.4		1.4	
e. Planar					1		1	
¹⁾ Joint roughness number $Jr = js x jw$ Note: $Jr = js x jw = 1$ for filled joints		•						
D3. Joint alteration or weathering		A4e	:=	Ja	ι =	j <i>i</i>	۹ =	
a. Healed or welded joints		6		0.	75	0	.75	
b. Unweathered, fresh joint walls		6			1		1	
c. Slightly weathered joint walls (coloured, d. s	. Slightly weathered joint walls (coloured, d. stained)		3		2		2	
e. Altered joint wall (no loose material)	e. Altered joint wall (no loose material)		0		4		4	
f. Coating of friction materials (silt, sand, etc.)		1		3		3		
g. Coating of cohesive materials (clay, chlorite, etc.)		0		4			4	
Filled joints	Filled joints		0		See below		below	
Filled joints		A4d	ľ	wall	t = no wall	đ	A =	
-	(t = joint thickness)	t < 5mm	t > 5mm	contact 1)	contact 2)	t < 5mm	t > 5mm	
No filling		6	-	-	-	-	-	
h. Friction materials (silt, sand, etc.)		5	2	4	8	4	8	
j. Hard, cohesive materials (clay, talc, chlorite)		4	2	6	8	6	8	
I. Soft, cohesive materials (soft clay)		2	0	8	12	8	12	
 n. Swelling clay materials 1) Wall contact before 10cm shear; 2) No contact w 	than abaarad:	0	0	10	18	10	18	
Note: Q and RMi apply a combination of joint weath	nering and infilling, while	e RMR has inp	ut of both v	veathering a	nd infilling			
D4. Joint length		A4a	l =		-	jl	_ =	
a. Crack ¹⁾ (irregular break)	Length < ~0.3m	8	8			5		
b. Parting (very short, thin joint)	< 1m						3	
c. Very short joint	0.3 – 1m	- 6					2	
d. Short joint	1 – 3m	4		Not in	cluded	1	.5	
e. Medium joint	3 – 10m	2					1	
f. Long joint	10 – 30m ²⁾	1				0	.75	
g. Filled joint, or seam ³⁾	> 10m	0				C).5	
¹⁾ "Crack" has been introduced in this table; ²⁾ Length					nost joints i	n the location a	are filled	
Persistence (continuity) of joints in the DMi system h	as heen renlaced by 'n	เฉบบแนแนบนธ์ ไไ	nno III Idl			T		
Persistence (continuity) of joints in the RMi system h D5. Joint separation or aperture (A)	as been replaced by 'D	A4b) =		-		-	
	None	A4b 6			-		-	
D5. Joint separation or aperture (A) a. Very tight	None A < 0.1mm	A4b 6 5			-		-	
D5. Joint separation or aperture (A) a. Very tight b. Tight	None	A4b 6		Notin			uded in the	
D5. Joint separation or aperture (A) a. Very tight	None A < 0.1mm	A4b 6 5 4		Not in	- cluded	input for '	- uded in the Interlocking ucture'	
D5. Joint separation or aperture (A) a. Very tight b. Tight	None A < 0.1mm	A4b 6 5		Not in	- cluded	input for '	Interlocking	

1

5

-

-

E. INTERLOCKING OF ROCKMASS		RMR	Q	RMi
Compactness of structure		-	-	IL =
a. Very tight structure	Undisturbed rock mass			1.3
b. Tight structure	Undisturbed rock mass with some joint sets	Not included	Not included	1
c. Disturbed / open structure	Folded / faulted with angular blocks	Not included	Not included	0.8
d. Poorly interlocked	Broken rockmasses with angular and rounded blocks			0.5

F. GROUND WATER CONDITIONS RMR Q RMi Water inflow to tunnel (q in litres/min) or water pressure (p_w) A5 = GW = Jw = a. Dry or damp q = 0 $p_w < 1 \text{ kg/cm}^2$ 15 1 0.66 b. Wet or small seeps p_w = 1-2.5 kg/cm² 10 q < 10 c. Dripping q = 10-25 7 0.5 2.5 $p_w = 2.5-10 \text{ kg/cm}^2$ q = 25-125 d. Gushing/material outwashing 4 0.3 e. Flowing, decaying with time 0 0.15 q > 125 $p_w > 10 \text{ kg/cm}^2$ 0.08 f. Large, continuous inflow -

NOTE! GW - is related to groundwater's influence on rockmass stability

G. ROCK ST	RESSES (around tunnel)	RMR	Q	RMi
G1. Stresses	below rockmass strength ($\sigma_{\theta} < \sigma_{cm}$)	-	SRF =	SL =
a. Very low str	ress level (as in portals)		2.5	0.1
b. Low stress level		Not included	2.5	0.5
c. Medium stre	ess level	Not included	1	1
d. High stress	d. High stress level		0.67	1.5
G2. Overstres	ssing; stresses > rockmass strength (σ_{θ} > σ_{cm})	-	SRF =	CF= RMi /σ _θ
	e. Moderate slabbing after >1 hr		25	0.75
in massive, brittle rocks	f. Slabbing and rock burst after few minutes		100	0.5
	g. Heavy rock burst	Not included	300	0.2
in deformable	h. Mild squeezing		10	0.75
rocks	ocks i. Heavy squeezing		20	0.5

H. WEAKNESS ZONES *)		RMR	Q	RMi
H1. Type of weakness zone		-	SRF =	-
a. Multiple weakness zones	any depth		10	
b. Single weakness zone	b. Single weakness zone depth < 50m		5	
c. Single weakness zone depth > 50m		Weakness zones	2.5	(Zono or choor
d. Multiple shear zones	any depth	and shears are not	7.5	 (Zone or shear characteristics are
e. Single shear zone	depth < 50m	explicitly included	5	included in the other
f. Single shear zone	depth > 50m	in RMR	2.5	input parameters)
g. Loose, open joints	J. Loose, open joints any depth		5	
h. Heavily jointed ("sugar cube")	any depth		5	
H2. Size of the zone		-	-	Tz =
Thickness or width of the zone (Tz)		Not included	Not included	Use width of zone in m
H3. Orientation of zone related to ea	cavation	-	-	Coz =
a. Very favourable				1
b. Favourable				1
c. Fair		Not included	Not included	1.5
d. Unfavourable				2
e. Very unfavourable				3
^{*)} Most weakness zones should be especia	ally evaluated, together with	the use of engineering judgeme	ent	

4 TWO WORKED EXAMPLES

The practical use of the correlations is shown below in the following two examples. The ground conditions in the tunnel roof have been used. A value of the excavation support ratio, ESR = 1 is used for the estimated support in the Q system.

4.1 Example 1: Moderately jointed rock

In a 10m wide tunnel, the ground conditions have been characterized as follows: A granite with uniaxial compressive strength, $\sigma_c = 125$ MPa is penetrated by 2 joint sets, both with favourable orientation of the main joint set. In addition, some random joints occur. Average degree of jointing is: RQD = 85; block volume, Vb = 0.1 m³; joint spacing, S = 0.2 - 0.4m. The fresh, continuous joints of the main set are rough & planar, tight and mostly longer than 3m. It is "damp" water condition, and approximately 100m rock overburden, i.e. medium stress level. Based on this, the Q, RMR and RMi input values and the estimated rock support are shown in Table 3.

Example 1: Moderately jointed rockmass			input		V	alues or ratings in	:
11	INPUT PARAMETERS			RMR		Q	RMi
A. ROCK	A1. Uniaxial compres	ssive strength	f / value	A1 = 12		-	σ _c = 125MPa
	B1. RQD		b / value	A2	= 17	RQD = 85	-
B. DEGREE OF JOINTING	B2. Block size		value		-	-	Vb = 0.1m ³
JOINTING	B3. Average joint spa	acing	С	A3	= 10	-	-
C. JOINTING	C1. Number of joint s	sets	е		-	Jn = 6	Nj = 1.2
PATTERN	C2. Orientation of ma	ain joint set in roof	b	B	= -2	-	Co = 1
	D1. Smoothness	isint roughnoon	b	A4c = 5		In in its A.F.	js = 1.5
	D2. Undulation	joint roughness	е -	1	$Jr = js \times jw = 1.5$	jw = 1	
D. JOINT CHARAC-	D3. Joint alteration	alteration	b	A4e = 6	A4 = 23	Ja = 1	Ja = 1
TERISTICS		filling	U	A4d = 6			5a – 1
	D4. Joint size or pers	sistence	е	A4a = 2		-	JI = 1
	D5. Joint separation	(aperture)	С	A4b = 4		-	-
	G OF ROCKMASS		b		-	-	IL = 1
F. GROUND WAT	ER		b	A5	= 10	Jw = 1	GW = 1
G. STRESSES AF	ROUND TUNNEL		С		-	SRF = 1	SL = 1
	Ground param	eters for support e	valuation	RMF	R = 70	span/ESR = 10 Q = 21.3	Sr = 13.5 Gc = 14.0
					ood	good	good
Estimated rock support, in roof				R	MR	Q	RMi
Rock bolt spacing				2.	5m	spot bolting	2 - 3m
Shotcrete thicknes		50n	nm *)	-	40 - 50mm		
*) where required							

Table 5: Example 1 with ratings of the various input parameters with estimated rock support based on Table 4

Comment

The RMi generally estimates heavier rock support than the two other classification systems. A main reason is that it is based on newer tunnel support examples where a higher degree of safety is required, which often includes more use of shotcrete.

4.2 Example 2: Strongly jointed rocks

This example refers to ground conditions encountered in the North Cape sub-sea road tunnel in Norway, constructed in 1995 to 1999. Half of this 8 m span, 6km long tunnel is located in sub-horizontal layers of meta-sandstone (σ_c = approx. 100MPa). The tight, smooth and planar joints with coating of mica and/or chlorite along the foliation are often longer than 3m. In addition to these foliation joints, it is a set of vertical joints and some random joints. However, the rock splits easily into smaller pieces, because of tiny, irregular (often partly welded) cracks, which are easily activated from the blasting. The result is a block volume of Vb = 0.0005 - 0.005m³ (representative Vb = 0.001m³ is used), RQD = 10, joint spacing mostly 5 - 20cm. The main joint set has fair orientation with regard to the tunnel. The rock overburden along the tunnel is 40 - 100m (medium stress level) and it was no or minor water inflows.

The tunnel was excavated mostly by 4m blast rounds. However, the stability in the tunnel was generally very poor. Shortly after blasting, small blocks started to fall. Therefore, it was important to quickly apply

shotcrete on the unstable face, roof and walls to obtain safe working conditions. Then, cast-in-place concrete lining was installed before next blast round. Alternatively, 2 - 3m blast rounds and support by thick shotcrete (fibre reinforced) and dense rock bolting were partly used.

Example 2: High	hly jointed rockmass			-	Valu	es or ratings in	:
	INPUT PARAMETE	RS	input	RM	IR	Q	RMi
A. ROCK	A1. Uniaxial compre	ssive strength	e / value	A1 = 7		-	σ_{c} = 100MPa
	B1. RQD		e / value	A2	= 5	RQD = 10	-
B. DEGREE OF JOINTING	B2. Block size		value	-	-	-	Vb = 0.001m ³
30111110	B3. Average joint sp	acing	d	A3	= 8	-	-
C. JOINTING	C1. Number of joint	sets	е	-		Jn = 6	Nj = 1.2
PATTERN	C2. Orientation of m	ain joint set (in roof)	С	B =	: -5	-	Co = 1.5
	D1. Smoothness	joint roughness	d	A4c = 1		$Jr = js \times jw = 1$	js = 1
	D2. Undulation	joint roughness	е	-		$JI = JS \times JW = I$	jw = 1
D. JOINT	D3. Joint alteration	weathering	f	A4e = 0		Ja = 3	jA = 3
CHARAC-		filling		A4d = 6	A4 = 13	υα = 0	JA = 5
TERISTICS	D4. Joint size		е	A4a = 2		-	jL = 1
	D5. Joint separation	(aperture)	с	A4b = 4		-	-
	IG OF ROCKMASS		b	-		-	IL = 1
F. GROUND WAT	ſER		С	A5 :	= 7	Jw = 0.66	GW = 1
G. STRESSES A	ROUND TUNNEL		С	-		SRF = 1	SL = 1
	Paran	neters for support ev	aluation	RMR	= 35	Span/ESR = 10 Q = 0.28	Sr = 75 Gc = 0.34
				ро	or	very poor	very poor
Rock support, in roof				RM	IR	Q	RMi
Rock bolt spacing				1 - 1	1.5	1.5 m	1 - 1.25m
Shotcrete thicknes	Shotcrete thickness				50mm	100 – 150mm	150 – 250mm
Additional support	Additional support				ibs spaced e required		

Table 6: The Ratings and values of the various rockmass parameters in Example 2 with estimated rock support

As seen from Table 4, the RMR system, and especially the Q system, indicates less rock support than what was necessary during excavation. The RMi system indicates that special support evaluations should be made, which is more in line with the stability and rock support used.

5 COMPARISON BETWEEN THE THREE CLASSIFICATION SYSTEMS

A computer spreadsheet to estimate the values in all the tree systems has been worked out, based on the combined input parameter tables in Table 4. By this, it is easy to calculate the corresponding ground qualities in the three classification systems from the common input values or ratings. Thus comparisons between the systems can be made, provided that the inputs of ground conditions are within the limits of all the three systems. Therefore overstressing (rock burst and squeezing) is not used in the comparisons, because it is not covered in the RMR system. The Excel spreadsheet used can be downloaded from www.rockmass.net

Figure 5 shows the results from comparisons found by using the spreadsheet. Also these show that there may be large inaccuracies from the average, often \pm 30 - 50%.

As shown, it is generally better correlation between Q and RMi and between RMR and RMi than between Q and RMR. A main reason for this is that Q does not use input of the compressive strength of intact rock. Weakness zones are poorly covered by the commonly used equation between Q and RMR (RMR = $9 \ln Q + 44$). However, when Qc (= $Q \times \sigma_c / 100$) is used, much better correlations are found.

Some special features cannot be appropriately estimated in classification systems, namely swelling and slaking. Also the conditions in weakness zones can, as mentioned, be difficult to classify correctly.

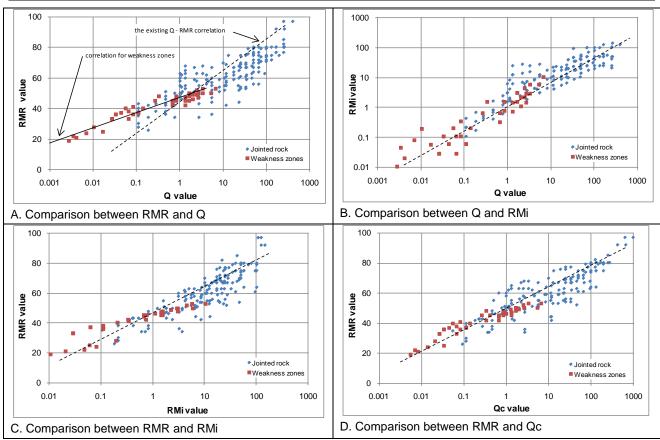


Figure 5: Comparisons between the RMR, Q and RMi classification systems, excluding stresses larger than 25MPa

6 CONCLUSIONS

The use of two or more classification systems in design and rock engineering, will generally lead to better and more accurate results.

Though there are many similarities between the RMR, Q and RMi classification systems, the differences between the parameters applied and their structure cause that the commonly used correlation equations between them can lead to severe errors. Better correlation results can be obtained if the combination of the input values shown in Table 4 is applied. With a spreadsheet the Q, RMR and RMi values can be easily and adequately found.

As all three systems work best in blocky ground, the degree of jointing (i.e. RQD, block size or joint spacing) is often the most important input parameter. This has been utilized in the spreadsheet presented in <u>www.rockmass.net</u>, where common conditions (i.e. the most frequent values of the input parameters) are implemented for most of the input parameters other than degree of jointing. These values are used when no information (input) is given. Thus from a limited amount of input parameters, it is possible to find crude estimates of the RMR, Q and RMi values. Obviously, better or more accurate results will be found when input values of all parameters are given.

The presented input values to the systems can be estimated from standard or common measurements and descriptions of the rock masses, stresses and groundwater conditions. There may turn up occasional difficulties when the input for block size is estimated from RQD (refer to Palmstrom, 2005). Two main reasons for this are:

- a) the inaccuracy in the measurement of RQD and its limits in characterizing massive rock and highly jointed rock; and
- b) the difficulties in measuring block volumes and selecting the representative sizes in a location.

In many cases the volumetric joint count can be used as input. The block volume to be used in the RMi and the RQD used in RMR and Q can also be calculated from a crude correlation.

15

Barton and Bieniawski (2008) have pointed out ten important commandments for proper use of classification systems. Another commandment is that the user knows the limits of the classification systems, and in addition has practical, geological knowledge and experience. In fact, it has often been found that simple systems may lead to errors or inaccuracies, because they are easily misused by inexperienced people.

In addition, it is a provision that the actual ground conditions are correctly characterized from measurements and observations (that the input parameters used in the systems represent the site conditions), and that the user has knowledge on how the input parameters are used in the systems.

The comparisons made between the three classification systems show the same as in Figure 1, that there are inaccuracies between them in their ability to arrive at the same ground quality with respect to instability in an excavation. The (total) rock support found in the two examples shows that the RMi system predicts somewhat more support than the RMR and Q. This is also the experience from practical applications of the Q and RMi systems.

It is important to keep in mind that most empirical methods in rock engineering give averaged values, and that it might be significant variation between the lowest and highest value. As has been pointed out by Palmstrom and Stille (2005), also the support guidelines in the various systems or methods are given as average values.

Acknowledgement

Many thanks to Prof. Hakan Stille at KTH, Stockholm for valuable help during the work on this article.

7 REFERENCES

7.1 Publications referred to:

Barton N., Lien R. and Lunde J. (1974): Engineering classification of rock masses for the design of rock support. Rock Mechanics 6, 1974, pp. 189-236.

Barton N. (2002): Some new Q-value correlations to assist in site characterization and tunnel design. Int. J. Rock Mech. & Min. Sci. nr. 39, side 185-216.

Barton N. and Grimstad E. (2004): The Q-system following thirty years of development and application in tunnelling projects. Proc. ISRM Symp. EUROCK 2004. Salzburg, Austria, 2004, pp. 15-18.

Barton N. and Bieniawski Z.T. (2008): RMR and Q – Setting records straight. Tunnels & Tunnelling, February 2008, pp. 26 – 29.

Bieniawski Z.T. (1974): Geomechanics classification of rock masses and its application in tunneling. Proc. Third Int. Congress on Rock Mechanics, ISRM, Denver 1974, pp. 27-32.

Bieniawski Z.T. (1989): Engineering rock mass classifications. John Wiley & Sons, New York, 251 pp.

Brekke T.L. and Howard T.R. (1972): Stability problems caused by seams and faults. Rapid Tunneling & Excavation Conference, 1972, pp. 25-41.

GeoEng2000 workshop on classification systems. (2001): The reliability of rock mass classification used in underground excavation and support design. ISRM News, Vol. 6, No. 3, 2001. 2 p.

Grimstad E. and Barton N. (1993): Updating the Q-system for NMT. Proc. Int. Symp. on Sprayed Concrete, Fagernes, Norway 1993, Norwegian Concrete Association, Oslo, 20 p.

Hadjigeorgiou J., Germain M. and Lessard J.F. (1998): Defining in-situ block size. CIM Bulletin, Vol. 91, No. 1020, pp. 72 – 75.

Hoek E. and Brown E.T. (1980): Underground excavations in rock. Institution of Mining and Metallurgy, London 1980, 527 p.

Jethwa J.L., Dube A.K., Singh B., and Mithal R.S. (1982): Evaluation of methods for tunnel support design in squeezing rock conditions. Proc. 4th Int. Congr. Int. Assoc. Eng. Geol., New Delhi, 1982, Vol. 5 pp. 125-134

Palmström A. (2000): Recent developments in rock support estimates by the RMi. Journal of Rock Mechanics and Tunnelling Technology, Vol. 6, No. 1 May 2000, pp. 1 – 19. Also in www.rockmass.net

Palmström A. (2005): Measurements of and correlations between block size and rock quality designation (RQD). Published in Tunnels and Underground Space Technology, Vol. 20, 2005, pp. 362-377. Also in www.rockmass.net

Palmström A. and Broch E. (2006): Use and misuse of rock mass classification systems with particular reference to the Q-system. Tunnels and Underground Space Technology, Vol. 21, pp. 575-593. Also in www.rockmass.net

Stille H., Palmström A. (2003): Classification as a tool in rock engineering. Tunnelling and Underground Space Technology, Vol. 18, pp. 331-345, 2003.

7.2 Some other publications, which are related to this article

Deere D.U. (1963): Technical description of rock cores for engineering purposes. Felsmechanik und Ingenieurgeologie, Vol. 1, No 1, pp. 16-22.

Hoek, E. (1983): Strength of jointed rock masses. The Rankine Lecture 1983, Geotechnique 33, no 3 pp. 187-223.

Hoek E. and Brown E.T. (1988): The Hoek-Brown failure criterion - a 1988 update. Proc. 15th Canadian Rock Mechanics Symp. 1988, pp. 31-38.

Hoek E., Practical rock engineering. Hoek's Corner, www. rocscience.com

International Society for Rock Mechanics (ISRM), Commission on standardization of laboratory and field tests (1978): Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, No. 6, pp. 319-368.

Palmström A. (1997): Collection and use of geological data in rock engineering. ISRM News, pp. 21- 25. (also in www.rockmass.net)

Palmström A. and Singh R. (2001): The deformation modulus of rock masses, - comparisons between in situ tests and indirect estimates. Tunnelling and Underground Space Technology, Vol. 16, No. 3, pp. 115 - 131. (also in www.rockmass.net)

Piteau D.R. (1970): Geological factors significant to the stability of slopes cut in rock. Proc. Symp. on Planning Open Pit Mines, Johannesburg, South Africa, 1970, pp. 33-53.

Serafim J.L. and Pereira J.P. (1983): Consideration of the geomechanics classification of Bieniawski. Proc. Int. Symp. on Engineering Geology and Underground Constructions, pp. 1133 - 1144.

Wood D. (1991): Estimating Hoek-Brown rock mass strength parameters from rock mass classifications. Transportation Research Record 1330, pp. 22-29.

8 APPENDICES

Appendix 1. The input parameters used in the RMR₁₉₈₉ classification system

	PAF	RAMETER		Ran	ge of values //	RATINGS			
	Strength of intact	Point-load strength index	> 10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	For this lo compr. str	ow range, rength is p	
1	rock material	Uniaxial compressive strength	> 250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	5 - 25 MPa	1 - 5 MPa	< 1 MPa
		RATING	15	12	7	4	2	1	0
0	Drill core qu	uality RQD	90 - 100%	75 - 90%	50 - 75%	25 - 50%		< 25%	
2		RATING	20	17	13	8		5	
•	Spacing of	discontinuities	> 2 m	0.6 - 2 m	200 - 600 mm	60 - 200 mm	<	: 60 mm	
3		RATING	20	15	10	8		5	
		a. Length, persistence	< 1 m	1 - 3 m	3 - 10 m	10 - 20 m		> 20 m	
		Rating	6	4	2	1		0	
		b. Separation	none	< 0.1 mm	0.1 - 1 mm	1 - 5 mm		> 5 mm	
		Rating	6	5	4	1		0	
	Condition	c. Roughness	very rough	rough	slightly rough	smooth	slie	ckenside	d
4	of discon-		6	5	3	1		0	
	tinuities	d Infilling (gougo)	none	Har	Hard filling		Soft filling		
		d. Infilling (gouge)	-	< 5 mm	> 5 mm	< 5 mm		> 5 mn	า
		Rating	6	4	2	2		0	
		e. Weathering	unweathered	slightly w.	moderately w.	highly w.	c	lecompo	sed
		Rating	6	5	3	1		0	
	Ground	Inflow per 10 m tunnel length	none	< 10 litres/min	10 - 25 litres/min	25 - 125 litres/r	min > ⁻	125 litres	/min
5	water	p _w / σ1	0	0 - 0.1	0.1 - 0.2	0.2 - 0.5		> 0.5	
•		General conditions	completely dry	damp	wet	dripping		flowing	J
		RATING	15	10	7	4		0	
p _w :	= joint water	pressure; $\sigma 1 = major pri$	ncipal stress				1		

A. Classification parameters and their ratings in the RMR system

B. RMR rating adjustment for discontinuity orientations

			Favourable	Fair	Unfavourable	Very unfavourable
	Tunnels	0	-2	-5	-10	-12
RATINGS	Foundations	0	-2	-7	-15	-25
	Slopes	0	-5	-25	-50	-60

C. Rock mass classes determined from total RMR ratings

Rating	100 - 81	80 - 61	60 - 41	40 - 21	< 20
Class No.	I	II	III	IV	V
Description	VERY GOOD	GOOD	FAIR	POOR	VERY POOR

D. Meaning of ground classes

Class No.	I	II	III	IV	V
Average stand-up time	10 years for 15 m span	6 months for 8 m span	1 week for 5 m span	10 hours for 2.5 m span	30 minutes for 1 m span
Cohesion of the rock mass	> 400 kPa	300 - 400 kPa	200 - 300 kPa	100 - 200 kPa	< 100 kPa
Friction angle of the rock mass	< 45°	35 - 45°	25 - 35°	15 - 25°	< 15°

Appendix 2. The input parameters used in the Q classification system

A. Rock quality designation (RQD) RQD = 0 - 25% Very poor Massive, no or few joints Jn = 0.5 - 1 Poor 25 - 50 One joint set 2 Fair 50 - 75 One joint set plus random 3 Good 75 - 90 Two joint sets 4 Excellent 90 - 100 Two joint sets plus random 6 Three joint sets 9 Notes: Three joint sets plus random 12 (i) Where RQD is reported or measured as < 10 (including 0), Four or more joint sets, heavily jointed, "sugar-cube", etc. 15 a nominal value of 10 is used to evaluate Q (ii) RQD intervals of 5, i.e. 100, 95, 90, etc. are sufficiently Crushed rock, earth-like 20 accurate Notes: (i) For tunnel intersections, use (3.0 x Jn); (ii) For portals, use (2.0 x Jn)

C. Classification with ratings for the Joint roughness number (Jr)

a) Rock-wall contact, b) rock-wall contact before 10 cm s	hear	c) No rock-wall contact when sheared				
Discontinuous joints Jr = 4		Zone containing clay minerals thick enough to prevent rock-	Jr = 1.0			
Rough or irregular, undulating	3	wall contact	JI = 1.0			
Smooth, undulating	2	Sandy, gravelly or crushed zone thick enough to prevent rock-	1.0			
Slickensided, undulating	1.5	wall contact	1.0			
Rough or irregular, planar	1.5	Notes:				
Smooth, planar	1.0					
Slickensided, planar 0.5 Note: i) Descriptions refer to small scale features, and intermediate scale features, in that order		i) Add 1.0 if the mean spacing of the relevant joint set is greater than 3 m ii) $Jr = 0.5$ can be used for planar, slickensided joints having lineations,				
		provided the lineations are oreintated for minimum strength				

D. Classification with ratings for the Joint alteration number (Ja)

_	JOINT WALL	CHARACTER	Condition		Wall contact
between walls		Healed or welded joints:	filling of quartz, epidote, etc.		Ja = 0,75
oetwe valls	CLEAN JOINTS:	Fresh joint walls:	no coating or filling, except from sta	iining (rust)	1
		Slightly altered joint walls:	non-softening mineral coatings, cla	y-free particles, etc.	2
Contact joint	JOINTS WITH COATING OF:	Friction materials:	sand, silt calcite, etc. (non-softening)		3
0	COATING OF.	Cohesive materials:	clay, chlorite, talc, etc. (softening)		4
wall	FILLING OF:		Туре	Wall contact before 10 cm shear	No wall contact when sheared
or no ontact	Friction materials	sand, silt calcite, etc. (non-	-softening)	Ja = 4	Ja = 8
y or cont	Hard cohesive materials	compacted filling of clay, chlorite, talc, etc. 6		6	5 - 10
Partly ct	Soft cohesive materials	medium to low overconsolidated clay, chlorite, talc, etc. 8			12
٩	Swelling clay materials	filling material exhibits swe	elling properties	8 - 12	13 - 20

E. Classification with ratings for the Joint water reduction factor (Jw)

Dry excavations or minor inflow, i.e. < 5 l/min locally	$p_w < 1 \text{ kg/cm}^2$	Jw = 1
Medium inflow or pressure, occasional outwash of joint fillings	1 - 2.5	0.66
Large inflow or high pressure in competent rock with unfilled joints	2.5 - 10	0.5
Large inflow or high pressure, considerable outwash of joint fillings	2.5 - 10	0.3
Exceptionally high inflow or water pressure at blasting, decaying with time	> 10	0.2 - 0.1
Exceptionally high inflow or water pressure continuing without noticeable decay	> 10	0.1 - 0.05
Note: (i) The last four factors are crude estimates. Increase Jw if drainage measures are installed		
(ii) Special problems caused by ice formation are not considered		

B. Classification with ratings for the Joint set number (Jn)

F. Classification with ratings for the Stress reduction factor (SRF)

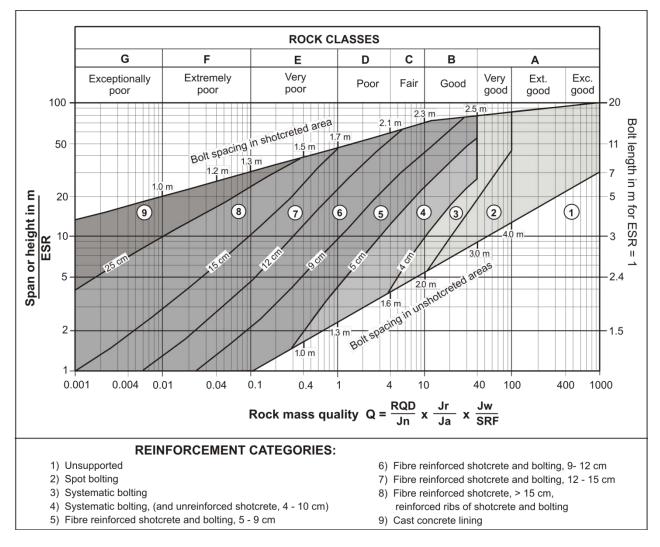
1 . Cias	Sincation	i willi ralings for the Stress reduction i					
uo	Multiple v	veakness zones with clay or chemically disinte	grated rock, very loose surrounding	g rock (any	depth)	SRF = 10	
s zones excavation	Single weakness zones containing clay or chemically disintegrated rock (depth of excavation < 50 m)						
zor xca	Single we	eakness zones containing clay or chemically dis	sintegrated rock (depth of excavat	ion > 50 m)	2.5	
e g	Multiple s	hear zones in competent rock (clay-free), loos	e surrounding rock (any depth)			7.5	
akne	Single sh	ear zones in competent rock (clay-free), loose	surrounding rock (depth of excave	ation < 50 r	n)	5	
Weakness Intersecting ex	Single sh	ear zones in competent rock (clay-free), loose	surrounding rock (depth of excave	ation > 50 r	n)	2.5	
inte	Loose, or	pen joints, heavily jointed or "sugar-cube", etc.	(any depth)		,	5	
Note: (i)	Note: (i) Reduce these values of SRF by 25 - 50% if the relevant shear zones only influence, but do not intersect the excavation $\sigma_c / \sigma_1 = \sigma_0 / \sigma_0$					SRF	
ς,	Low stres	> 200	< 0.01	2.5			
Competent rock, rock stress problems	Medium stress, favourable stress condition 200 - 10 0.01 - 0.3						
em:	High stre	0.3 - 0.4	0.5 - 2				
mpetent ro rock stress problems	Moderate	slabbing after > 1 hour in massive rock		5 - 3	0.5 - 0.65	5 - 50	
	Slabbing	and rock burst after a few minutes in massive	rock	3 - 2	0.65 - 1	50 - 200	
Õ	Heavy ro	ck burst (strain burst) and immediate dynamic	deformation in massive rock	< 2	> 1	200 - 400	
	. ,	ngly anisotropic stress field (if measured): when 5 < c se records available where depth of crown below surf		-1/σ3 > 10, n	educe σ_c to 0.	5 <i>0</i> c	
	Sugges	t SRF increase from 2.5 to 5 for low stress cases			$\sigma_{\theta} / \sigma_{c}$	SRF	
Sause	zing rock	Plastic flow of incompetent rock under the	Mild squeezing rock pressure		1 - 5	5 - 10	
Oquee.	Zing TOCK	influence of high pressure	Heavy squeezing rock pressure		> 5	10 - 20	
Swoll	ing rock	Chemical swelling activity depending on	Mild swelling rock pressure			5 - 10	
Swell	Ing TOCK	presence of water	Heavy swelling rock pressure			10 - 15	

Appendix 3. The input parameters used in the RMi system

						INP	UT	
A. U	niaxial c	ompressi	ve strength of i	ntact roo	;k, σ _c			
Found from lab. tests, simple field hammer test or assumed from handbook tables						value of σ_c (in MPa)		
B. BI	lock volu	ıme, Vb				-		
Found fr	rom meas	urement at	site or from drill co	ores, etc. (Vb can also be calculated from RQD or Jv)	value of V	/b (in m³)	
C. Jo	oint roug	hness fac	tor, jR (simila	rto Jrir	the Q-system) $jR = Jr = js \times jw$	<u>-</u>		
		Very roug	js =	: 3				
Small s	cale	Rough or i	2					
	ness of	Slightly ro	ugh	1.25				
joint su	rface	Smooth	1					
			Polished or slickensided ")					
*) For slic	kensided s		atings apply to possib	ole moveme	nt along the lineations			
		Planar				jw = 1		
Large s		Slightly undulating					1.4	
wavine			y undulating	2				
joint pla	ane	Strongly u		2.5				
) Dianawi	Discontinuous joints) Discontinuous joints end in massive rock (For filled joints $jR = 1$)					6		
,			,	lled joints jl	*			
D. Joi	int altera	tion facto		-	ased on Ja in the Q-system)			
ŧ	CLEAN JOINTS:		Healed or welded joints filling of quartz, epidote, etc.		jA =0.75			
ы jeit			Fresh joint walls		no coating or filling, except from staining (rust)	1		
Contact between joint walls			Altered joint walls		- one grade higher alteration than the rock	2		
S & S					- two grades higher alteration than the rock	4		
pet			Frictional materials		sand, silt calcite, etc. without content of clay	3		
			Cohesive mater	ials	clay, chlorite, talc, etc.	4		
gt						Thin filling (< ca. 5 mm)	Thick filling	
Partly or no wall contact	FILLING OF:		Frictional materia	als	sand, silt calcite, etc. (non-softening	jA = 4	jA = 8	
<u>></u> 0			Hard, cohesive materials		clay, chlorite, talc, etc.	6	5 - 10	
vall			Soft, cohesive materials		clay, chlorite, talc, etc.	8	12	
шş			Swelling clay ma	aterials	smectite, montmorillonite etc.	8 - 12	13 - 20	
E. Jo	oint size	factor, jL	(length of the	joint) disc	- ontinuous joints (earlier included here) have been include	d in the joint roug	ghness	
	or foliation			length < (jL = 3		
				with lengt	th 0.1 - 1m	2		
Joints					th 1 - 10m	1		
				with length 10 - 30m		0.75		
Long joint, filled joint, seam or shear			shear	length > 30m		0.5		
*) Often a	singularity	and should if	it has a significant in	npact on sta	bility, be treated separately			
F. In	terlockir	ng (compa	actness) of rocl	kmass st	ructure, IL			
	t structure	• • •	ļ		ed rock mass, tightly interlocked	IL =	1.3	
Tight structure					ed, jointed rock mass	1		
Disturbed / open					aulted with angular blocks	0.8		
Poorly interlocked					th angular and rounded blocks	0.5		

Appendix 4. The support table used in the RMR classification system

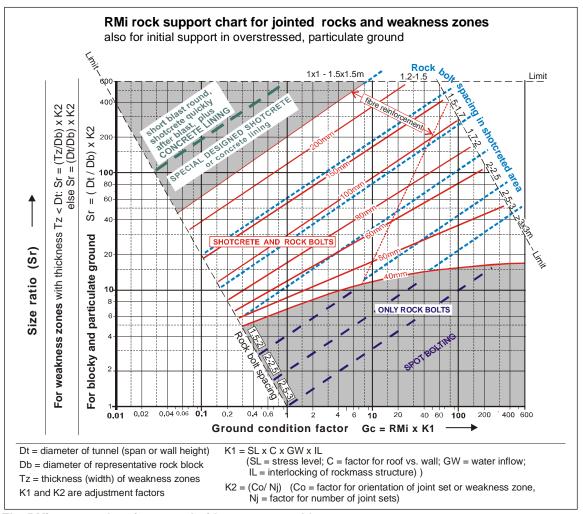
Ground		Support				
Ground mass class	Excavation	Rock bolts (20 mm diam., fully bonded)	Shotcrete	Steel sets		
1.Very good rock RMR: 81-100	Full face: 3 m advance	Generally no support required except for occasional spot bolting				
2.Good rock RMR: 61-80	Full face: 1.0-1.5 m advance; Complete support 20 m from face	Locally bolts in crown, 3 m long, spaced 2.5 m with occasional wire mesh	50 mm in crown where required	None		
3.Fair rock RMR: 41-60	Top heading and bench: 1.5-3 m advance in top heading; Commence support after each blast; Commence support 10 m from face	Systematic bolts 4 m long, spaced 1.5-2 m in crown and walls with wire mesh in crown	50-100 mm in crown, and 30 mm in sides	None		
4.Poor rock RMR: 21-40	Top heading and bench: 1.0-1.5 m advance in top heading; Install support concurrently with excavation - 10 m from face	Systematic bolts 4-5 m long, spaced 1-1.5 m in crown and walls with wire mesh	100-150 mm in crown and 100 mm in sides	Light ribs spaced 1.5 m where required		
5.Very poor rock RMR < 21	Multiple drifts: 0.5-1.5 m advance in top heading; Install support concurrently with excavation; shotcrete as soon as possible after blasting	Systematic bolts 5-6 m long, spaced 1-1.5 m in crown and walls with wire mesh. Bolt invert	150-200 mm in crown, 150 mm in sides, and 50 mm on face	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close invert		


Note: Applies to tunnels with 10m span width

Appendix 5. The support chart used in the Q₁₉₉₃ system


The Excavation Support Ratio, ESR

Type of excavation	ESR	
Temporary mine openings.	3 - 5	
Permanent mine openings, water tunnels for hydro power (excluding high pressure penstocks), pilot tunnels, drifts and headings for large excavations.		
Storage rooms, water treatment plants, minor road and railway tunnels, surge chambers, access tunnels.		
Power stations, major road and railway tunnels, civil defence chambers, portal intersections.		
Underground nuclear power stations, railway stations, sports and public facilities, factories.	0.8	



The Q support chart for various sizes of underground excavations

6. The support charts used in the RMi support method

The RMi support chart for ground with stress problems

The RMi support chart for ground without stress problems

The input parameters with ratings used in the RMi calculation of rock support

GROUND WATER INFLOW, GW ^{*)}	INCLINATION OF TUNNEL SURFACE, C				
Dry excavation	ation		Horizontal (roof)		
Damp	GW = 1	30° inclination (roof in shaft)			1.5
Wet		45° inclination (roof in shaft)			2.2
Dripping "	2.5	60° inclination (roof in shaft)			3
Gushing [*]	5	Vertical (and steep walls)			5
Flowing, decaying with time	Outside limit				
Heavily flowing, without noticeable decay	of RMi				
$^{*)}$ GW is related to groundwater's influence on rockmass si	tability				
STRESS LEVEL, SL	NUMBER OF JOINT SETS, Nj $^{()}$				
Very low (in portals, etc.) (overburden < 10 m)	SL = 0.1	One set	Nj = 3	Three sets	Nj = 1
Low (overburden 10 - 35 m)	0.5	One set + random	2	Three sets + random	0.85
Moderate (overburden 35 - 350 m)	1	Two sets	1.5	Four sets	0.75
High (overburden > 350 m)	1.5 ^{*)}	Two sets + random	1.2	Four sets + random	0.65
*) For stability in high <i>walls</i> a high stress level may be unfair Possible rating, SL = 0.5 - 0.75	*) Means the number of joint sets, in the actual location only				
ORIENTATION OF JOINTS AND ZONES,	Co (related to	the tunnel)			
Very favourable	Co = 1	Unfavourable			Co = 2
Favourable		Very unfavourable			3
Fair	1.5				

Appendix 7. Graphical method to easily estimate the RMi value

Example shown: Strongly jointed rock (Vb = 5 dm3) with coated joints (jC = 0.25) gives RMi_o = 0.7. With a uniaxial rock strength of σ_c = 150MPa, RMi = 1.05