Classifications of various materials and features

CHARACTERIZATION		Rockmass compr. strength (approx RMi value)
Term related to rock mass strength Term for RMi		(MPa)
Extremely weak Very weak Weak	Extremely low Very low Low	< 0.001 0.001 - 0.01 0.01 - 0.1
Moderately strong	Moderately high	0.1 - 1
Strong Very strong Extremely strong	High Very high Extremely high	1 - 10 10 - 100 > 100

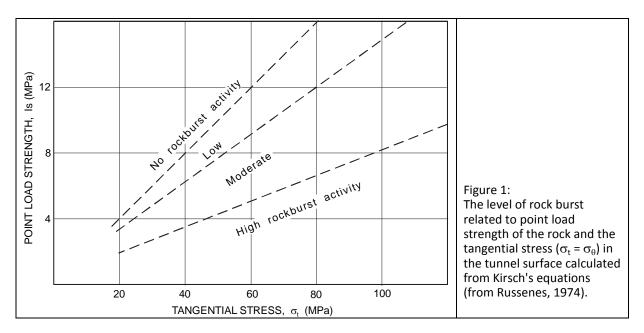
Table 1: Suggested classification of rockmass strength (from Palmström, 1995)

Table 2: Main types of coating and filling materials in joints and seams

FILLING MATERIALS IN JOINTS		PROPERTIES		
Calcite		May dissolve, particularly when being porous or flaky.		
FRICTIONAL MATERIALS Gypsum Epidote, quartz Zeolite	Gypsum	May dissolve.		
	May cause healing or welding of the joint.			
	May slake.			
Sandy or silty materials		Cohesionless, friction materials.		
Chlorite, talc, graphite		Very low friction materials, in particular when wet.		
COHESIVE MATERIALS	Inactive clay materials	Weak, cohesion materials with low friction properties.		
Swelling clay		Exhibits a very low friction and loss of strength together with high swelling pressure.		

Rock spalling/slabbing and rock burst

(from W.D. Ortlepp Rockbursts in tunnels / Tunnelling and Underground Space Technology 16 (2001) 41 -48)


The term 'rockburst' is widely used throughout the mining world and is well known to tunnellers in some countries particularly in Scandinavia. Unfortunately, it also has some wide range of meanings and there does not appear to be a broadly recognised definition of the term.

Definition (from South African hard rock mining): a rockburst is a 'seismic event' which causes violent and significant damage to a tunnel or the excavations of a mine. 'Seismic event' is understood to be an incident resulting from some failure or slip in the rockmass, which causes significant vibrations to radiate outward from the source to be felt as a distinct shock or severe tremor.

Seismic event	Postulated source mechanism	First motion from seismic records	Richter magnitude M _L	
Strain-burst	Superficial spalling with violent ejection of fragments	Usually undetected, could be implosive	-0.2 - 0	
Buckling	Outward expulsion of large slabs pre- existing parallel to surface of opening	Implosive	0 - 1.5	
Face crush/ pillar burst	Violent expulsion of rock from stope face or pillar sides	Mostly implosive, complex	1 - 2.5	
Shear rupture	Violent propagation of shear fracture through intact rock mass	Double-couple shear	2.0 - 3.5	
Fault-slip	Sudden, renewed movement on existing fault or dyke contact	Double-couple shear	2.5 - 5.0	

Table 3: Simplified classification of seismic event types (from Ortlepp, 2001)

Russenes (1974) has shown the relations between rock burst activity, tangential stress on in the tunnel surface and the point load strength of the rock (Figure 1).

Table 4: Classification of slabbing and rock burst

σ_c/σ_{θ}	RMi / σ _θ	Stress mode (in massive rock)		
> 4	2	Stable		
4 - 2	2 - 1	Low rock slabbing/spalling activity		
2 - 1	1 – 0.5	Moderate slabbing after few hour		
< 1	< 1 < 0.5 High rock bursting activity (within few minutes)			
In massive rock, RMi $\approx 0.5\sigma_c$				
σ_{θ} = tangential stress; σ_{c} = uniaxial strength; RMi = rock mass index				

Swelling minerals

Table 5: Classification of free swell and of swelling pressure as suggested by NBG, 1985

Parameter	Classification				Comment	
Farameter	low or small	moderate	high	very high	comment	
Free swell	< 100%	100 – 140%	140 – 200%	> 200%	Measured on dry powder < 20 μm	
Swelling pressure	< 0.1 MPa	0.1 – 0.3 MPa	0.3 – 0.75 MPa	> 0.75 MPa	With 0.2 MPa pre-consolidation	

Karstification

Suggested classification of the karstification (chemical solution of rock from water) of limestone and marble in underground excavations:

none	no visible signs of karst development along joints or fissures;
very small	mm sized opening(s) along fissures or joints from initial karst activity;
small	channels of cm size have been developed;
moderate	openings of dm thickness;
strong to very strong	development of large caves in the metre range.

Water inflow to underground excavations

Suggested classification of the inflow of water into underground excavations:

seepage	inflow volumes < dm³/day;
dripping	inflow volumes of dm ³ /day to m ³ /hour;
flowing	inflow volumes of m ³ /hour to several m ³ /min;
water in-burst	inflow volumes of several m ³ /s.

Orientation of joints related to the axis of the tunnel or cavern

able 0. Classification of t	ne enect of joints, accordin	ig to bielilawski, 1984				
Strike perpendicular to tunnel axis						
Drive with dip Drive against dip						
Dip 45° – 90°	Dip 20° – 45°	Dip 45° – 90°	Dip 20° – 45°			
Very favourable Favourable		Fair	Unfavourable			
Strike parallel						
Strike parallel to tunnel axis			Irrespective of strike			
Dip $20^\circ - 45^\circ$	Dip $45^\circ - 90^\circ$		Dip $0^{\circ} - 20^{\circ}$			

Fair

Table 6: Classification of the effect of joints, according to Bieniawski, 1984

Very unfavourable

TERM	In one WALL		In opposite WALL		In ROOF	
	strike (°)	dip (°)	strike (°)	dip (°)	strike	dip (^o)
Very favourable	> 70	all	> 70	all		> 60
Favourable	< 20	< 20	. 20	< 20	l strike	45 - 60
Fair		20 - 45		≤60		30 - 45
	20 70	< 45	20 - 70	all		
Unfavourable	20 - 70	45 00	< 20	> 60	a	15 - 30
Very unfavourable	< 20	45 - 90	-	-		< 15

References

Fair

Russenes B.F. (1974): Analysis of rock spalling for tunnels in steep valley sides (in Norwegian). M.Sc. thesis, Norwegian Institute of Technology, Dept. of Geology, 247 p.

NBG - Norwegian group of rock mechanics (1985): Handbook in engineering geology - rock. (in Norwegian). Norwegian rock mechanics group (NBG). Tapir, 140 p.

Ortlepp W.D. (2001): The behavior of tunnels at great depth under large static and dynamic pressures. Tunnelling and Underground Space Technology, 16(1), pp. 41– 48.

Palmström A., 2014, in the spreadsheet 'Geo-calculations'.